
Refactoring at Scale

Contrast is the difference between
two different colors. It helps to
show definition and leads the eye
around a piece of artwork or design.

Small Scope

Shift in Product Requirements

Code Complexity 
Hinders Development

Using a new Technology

Performance issues

Put in place an abstraction
Enable dark mode

Monitor any differences between the 2 result sets
Track down and fix any potential bugs in the new implementation

Enabling dark mode to broader groups of users
Continue logging any differences in the result sets

Opt groups of users into light mode
Until everyone is successfully processing results from the new implementation

Disable execution of both code paths
Remove the old logic

PROXIMITY

"No refactor is complete unless all remaining transitional artifacts are properly cleaned up"

Identify Strategic Intermediate Milestones
1) Does this step feel attainable in a reasonable period?
2) Is this step valuable on its own?
3) If something comes up, could we stop at this step and pick it back up easily later?

DRAFT A PLAN

Define your end state
Outline all starting metrics and target end metrics Open a blank document technique

OR Gather a few coworkers

Map the shortest distance

Feature Flags
Dead Code
Comments (TODOs)

Clean Up Artifacts Reference Metrics
Include definitive progress metrics Provide Transparency

Gather perspective to strengthen it

Share your plan

Choose a Rollout Strategy
Dark Mode / Light Mode

Light
The results from the NEW implementation are RETURNED

GET BUY-IN

Always remember

Aren’t Coding

Managers

Are Evaluated Differently

See the Risk

Need to Coordinate

Persuade Them
(some techniques)

Using Conversational Devices

Build an Alignment Sandwich

Rely on Evidence

Play Hardball

BUILD 
THE RIGHT TEAM

"To execute on a large refactoring effort successfully, we need our own Ocean’s 11 [...] 
a team just the right size with just the right skills"

2 Ways to Enlist Someone

Heavily involved from day one
Actively contributing to the effort by writing code
Consulted for input on the execution plan

Active Contributor
Agreed to be available to talk through solutions with you
Answer questions
Can do some code review

Subject matter experts (SMEs)

Within Your Team

Stand-Ups
Everyone aligned at regular intervals

1st part : accomplishments
2nd part : discuss any important topics

Weekly Syncs

Retrospectives
Reflect on the latest iteration cycle

Outside Your Team

When Kicking Off

Single Source of Truth
Choose a platform to collect all documentation

Set Expectations
Draft a communication plan

Announce Progress

During Project Execution

Execution Plan
Living Version

BY YOAN THIRION @YOT88#sharingiscaring

Commit small, incremental changes
Makes it much easier to author great code

Keep Things Small

Confirm everything has remained unaffected 
Or pinpoint the precise moment at which the behavior diverged

Test, Test, Test

Prioritize clarity 
Over maintaining an illusion of omniscience

Asking the “Stupid” Question

EXECUTION

Matchmaking
Match each expertise with one or more people

H
ow

 T
o 

?

Dark
The results from the OLD implementation are RETURNED

Both implementations are called
The results are compared

Compare pre-refactor and post-refactor behavior :

By Maude Lemaire
One that affects a substantial surface area of your systems
Involves typically large codebases

At Scale

Halstead metrics
Cyclomatic Complexity
NPath Complexity 

Measure Code Complexity 
Quantitatively : proportion of code under test
Qualitatively : suitable test quality has been attained

Test Coverage Metrics
Formal : everything you most likely think of as documentation
Informal : Chat / email transcripts, Bug Tracking system, ...

Documentation

Refactoring
Restructure existing code 
WITHOUT changing its external behavior

Increase developer productivity
Greater ease identifying bugs

Benefits
Serious Regressions
Unearthing Dormant Bugs
Scope Creep

Risks

When NOT ?

For Fun or Out of Boredom

 to Be Passing By
Because You Happened

To Make Code More Extendable

When You Don’t Have Time

PLANNING MEASURE OUR STARTING STATE

Commit messages : keywords for given code
Commits in Agg : change frequencies, authorship

Version Control
Low-effort means of collecting reputation data 
Interview fellow developers

Reputation Build a Complete Picture
Pick one metric from every category

COMMUNICATION

"Policy of no laptops and minimal phone usage during meetings" 

PROGRAM 
PRODUCTIVELY

Prototype

Early and often
Help move faster

Know your solution won't be perfect
Not spend too much time perfecting the details

Be willing to throw code away

MAKE THE
REFACTOR STICK

Foster Adoption through education Integrate Improvement into the Culture

Active
Planning / leading workshops Step-by-step tutorials

Online courses, ...

Passive

Continuous small refactoring
Incrementally improve areas of the codebase

To maintain a healthy codebase

Encourage design conversations

Early in the feature development process

Hold design reviews

Redundant Database Schemas
Migrating to a New Database

Case Studies @Slack

https://www.linkedin.com/in/yoanthirion/
https://twitter.com/yot88
https://www.linkedin.com/in/yoanthirion/
https://www.linkedin.com/in/lemairemaude/

